Polyester synthases: natural catalysts for plastics.
نویسنده
چکیده
Polyhydroxyalkanoates (PHAs) are biopolyesters composed of hydroxy fatty acids, which represent a complex class of storage polyesters. They are synthesized by a wide range of different Gram-positive and Gram-negative bacteria, as well as by some Archaea, and are deposited as insoluble cytoplasmic inclusions. Polyester synthases are the key enzymes of polyester biosynthesis and catalyse the conversion of (R)-hydroxyacyl-CoA thioesters to polyesters with the concomitant release of CoA. These soluble enzymes turn into amphipathic enzymes upon covalent catalysis of polyester-chain formation. A self-assembly process is initiated resulting in the formation of insoluble cytoplasmic inclusions with a phospholipid monolayer and covalently attached polyester synthases at the surface. Surface-attached polyester synthases show a marked increase in enzyme activity. These polyester synthases have only recently been biochemically characterized. An overview of these recent findings is provided. At present, 59 polyester synthase structural genes from 45 different bacteria have been cloned and the nucleotide sequences have been obtained. The multiple alignment of the primary structures of these polyester synthases show an overall identity of 8-96% with only eight strictly conserved amino acid residues. Polyester synthases can been assigned to four classes based on their substrate specificity and subunit composition. The current knowledge on the organization of the polyester synthase genes, and other genes encoding proteins related to PHA metabolism, is compiled. In addition, the primary structures of the 59 PHA synthases are aligned and analysed with respect to highly conserved amino acids, and biochemical features of polyester synthases are described. The proposed catalytic mechanism based on similarities to alpha/beta-hydrolases and mutational analysis is discussed. Different threading algorithms suggest that polyester synthases belong to the alpha/beta-hydrolase superfamily, with a conserved cysteine residue as catalytic nucleophile. This review provides a survey of the known biochemical features of these unique enzymes and their proposed catalytic mechanism.
منابع مشابه
Biogenesis of microbial polyhydroxyalkanoate granules: a platform technology for the production of tailor-made bioparticles.
Biopolyester (PHAs = polyhydroxyalkanoates) composed of hydroxy fatty acids represent a rather complex class of storage polymers synthesized by various eubacteria and archaea and are deposited as water-insoluble cytoplasmic nano-sized inclusions. These spherical shell-core particles are composed of a polyester core surrounded by phospholipids and proteins. The key enzymes of polyester biosynthe...
متن کاملBiological degradation of synthetic polyesters—Enzymes as potential catalysts for polyester recycling
The depolymerization of polymers by enzymes is of great interest for biodegradable plastics, a group of materials which has been developed as an answer to increasing problems in plastics waste management. Polyesters play the dominant role in biodegradable polymers and recently a model of polyester degradation by hydrolyses (lipases) has been published. The chain mobility of the polymer chains p...
متن کاملEnhancing the Catalytic Activity in the Solid State: Metal–Organic Frameworks to the Rescue
With a double life as an indispensible consumer commodity but also an environmental scourge, plastics are omnipresent in the modern age, produced at massive scales and a constant source of political and societal debate. Compared to the commonly used polypropylene-based plastics, polyester plastics using poly((R)-β-hydroxybutyrate) (PHB) are biodegradable and therefore have much less of a harmfu...
متن کاملFabrication of thermoset polyester microfluidic devices and embossing masters using rapid prototyped polydimethylsiloxane molds.
Plastics are increasingly being used for the fabrication of Lab-on-a-Chip devices due to the variety of beneficial material properties, affordable cost, and straightforward fabrication methods available from a range of different types of plastics. Rapid prototyping of polydimethylsiloxane (PDMS) devices has become a well-known process for the quick and easy fabrication of microfluidic devices i...
متن کاملMicrobial enzymes for the recycling of recalcitrant petroleum‐based plastics: how far are we?
Petroleum-based plastics have replaced many natural materials in their former applications. With their excellent properties, they have found widespread uses in almost every area of human life. However, the high recalcitrance of many synthetic plastics results in their long persistence in the environment, and the growing amount of plastic waste ending up in landfills and in the oceans has become...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 376 Pt 1 شماره
صفحات -
تاریخ انتشار 2003